
Table of Contents

Workshop on Object-Oriented Reengineering. 1
Serge Demeyer (University of Antwerp), Stéphane Ducasse (University
of Berne), Kim Mens (Université catholique de Louvain), Adrian Trifu
(FZI Forschungszentrum Informatik, Karlsruhe), Rajesh Vasa (Swinburne
University of Technology), Filip Van Rysselberghe (University of Antwerp)

Workshop on Object-Oriented Reengineering

Serge Demeyer1, Stéphane Ducasse2, Kim Mens3, Adrian Trifu4, Rajesh Vasa5, and
Filip Van Rysselberghe1

1 Department of Mathematics and Computer Science, University of Antwerp — Belgium
2 Software Composition Group, University of Berne — Switzerland

3 Département d’Ingnierie Informatique, Université catholique de Louvain — Belgium
4 Programmstrukturen, FZI Forschungszentrum Informatik, Karlsruhe — Germany

5 Department of Information Technology, Swinburne University of Technology — Australia

1 Introduction

The ability to reengineer object-oriented legacy systems has become a vital matter in
today’s software industry. Early adopters of the object-oriented programming paradigm
are now facing the problems of transforming their object-oriented “legacy” systems into
full-fledged frameworks.

To address this issue, a series of workshops have been organized to set up a forum
for exchanging experiences, discussing solutions, and exploring new ideas. Typically,
these workshops are organized as satellite events for majorsoftware engineering confer-
ences, such as ECOOP’97 [5], ESEC/FSE’97 [10, 11], ECOOP’98[17, 16], ECOOP’99
[14, 13], ESEC/FSE’99 [12]. The last of this series so far hasbeen organized in con-
junction with ECOOP’03, its proceedings were published as atechnical report from the
University of Antwerp [8], and this report summarizes the key discussions and outcome
of the workshop6.

For the workshop itself we chose a format which balanced presentation of position
papers against time for discussion, using the morning for presentation of position papers
and the afternoon for discussion in working groups. Due to time restrictions we could
not allow for every author to present. Instead, we invited three authors to not only
present their own work, but also to summarize two related position papers. This format
resulted in quite vivid discussions during the presentations, because authors felt more
involved and because the three persons presenting (Roland Bertuli, Ragnhild Van Der
Straeten, and Adrian Trifu) did such a splendid job in identifying key points in the
papers. Various participants reported that it was illuminating to hear other researchers
present their work.

During the discussion we maintained a list of “points of interest” on the blackboard,
which later served as a guidance for identifying common issues. Based on this list, we
broke up in two working groups, one onVisualisation of Software Evolution, the other
on Reengineering Patterns. The workshop itself was concluded with a plenary session
where the results of the two working groups were ventilated in the larger group. Finally,

6 The workshop was sponsored by the European Science Foundation as a Research Network
”Research Links to Explore and Advance Software Evolution (RELEASE)” and the Fund for
Scientific Research – Flanders (Belgium) as a Research Network ”Foundations of Software
Evolution”.

we discussed some practical issues, the most important one being the idea to organize
a similar workshop next year.

2 Summary of Position Papers

In preparation of the workshop, we received 12 promising position papers (none of
them has been rejected) which naturally fitted into three categories: (a) Dynamic Anal-
ysis, (b) Design Consistency, (c) Methods and techniques inSupport of Object-Oriented
Software Evolution. After a reviewing phase, the authors were allowed to revise their
initial submission and the resulting position papers were collected in the WOOR’03
proceedings [8]. These proceedings were sent out to all participants beforehand in or-
der to allow them to prepare for the workshop.

For each of the categories, we asked one author to summarize the position papers;
you will find these summaries below.

2.1 Dynamic Analysis

Understanding how a program under maintenance is structured, is an important step
in re-engineering that application. Such program comprehension techniques either use
static, i.e. source code and other documents, or dynamic, i.e. runtime information like
method invocations, information. However the different nature of object-oriented lan-
guages with its late binding and polymorphism, makes it harder to rely solely on static
information. This makes run-time analysis an important research topic within the field
of object-oriented re-engineering.

The four papers on this subject of run-time analysis focussed on two different prob-
lems. Coping with the huge amount of information generated by run-time traces, was
the concern of the first two papers ([31] and [4]). Where the third [22] and fourth [23]
paper presented their solution to allow an optimal instrumentation of the code.

Using a Variant of Sliding Window to Reduce Event Trace Data.In [31], Zaidman
and Demeyer present a technique based on the ideas of slidingwindow and frequency
spectrum analysis. Using the execution frequency of methods, they partition the meth-
ods of a program in 3 groups: (1) those that are executed frequently (those methods
point to low-level functionality, (2) the midrange and (3) those that are executed in-
frequently (very high-level, e.g. the main() of en program). According to the authors
the main interest is in the midrange sector because these methods can give clues about
a programs architecture. A variant of the sliding-window mechanism, well-known in
the world of telecommunications, is used to pass over the execution trace, identifying
regions containing a high degree of methods catalogued in the midrange category.

Run-time Information for Understanding Object-Oriented Systems. In [4], Bertuli,
Ducasse and Lanza measure aspects of a running software system, such as the number
of created instances or the number of method invocations. these measurements are then
visualized using so-called ’polymetric views’ [7, 21]. Thepaper identifies four config-
uration of views and metrics that offer important information about the running system
and the role of identified classes.

A Mechanism for Instrumentation Based on the Reflection Principle. / A New
Strategy for Selecting Locations of Instrumentation. In [22], Li and Chen separate
the instrumentation code from the actual code by using meta-level objects. of course,
this approach has been shown to work for other languages suchas Smalltalk and Java.
Yet, these authors show that it is feasible to apply this approach for C++ systems as
well. Since C++ lacks meta-objects, the authors actually rely on anopen compilerto
mix the meta-level code with the base objects.

Li and Chen submitted a second paper [23], reporting on a possible application of
their open compiler approach for instrumenting code. The idea is to identify good places
for instrumenting code by analyzing the call-graph. The approach is validated in a tool
called XDRE.

2.2 Design Consistency

Four position papers addressed the problem ofdesign consistency, i.e. the recurring
problem of ensuring that the design documentation remains synchronized with all other
project artifacts (i.e. requirements specifications, other design documents, the imple-
mentation). In principal, there are two different approaches to tackle design inconsis-
tencies. The first one is thehorizontal approach, attacking inconsistencies between dif-
ferent design documents; the other one is thevertical approach, tackling inconsistencies
between models at different levels of abstraction. As a representative for the vertical ap-
proach, we had the paper [24], [18]. As a representative for the horizontal approach we
had the papers [26], [20].

Intentional Source-Code Views.Mens and Poll [24] propose the lightweight abstrac-
tion of intentional source-code views as a way to codify high-level information about
the architecture, design and implementation of a software system, that an engineer may
need to better understand and maintain the system. They report on some experiments
that investigate the usefulness of intentional source-code views in a variety of software
maintenance, evolution and reengineering tasks, and present the results of these exper-
iments in a pattern-like style.7

Maintaining Consistency among UML Models. Mens, Van Der Straeten and Sim-
monds [26] address the problem of preserving consistency among the various UML
models of which a software design typically consists, in particular after some of the
models have evolved. To achieve the detection and resolution of consistency conflicts,
the use of description logics and their associated tools is proposed. The authors argue
how this approach allows them to partially automate the detection and resolution of
design inconsistencies, thus increasing the maintainability of the software.8

Extending UML for Enabling Refactoring. In their position paper, Van Gorp et al
[18] address the gap between existing UML tools on the one hand, and refactoring tools

7 An extended version of this paper has been published at the ICSM2003 conference [25].
8 An extended version of this paper has been published at the UML2003 conference [29].

on the other. Whereas the former are designed to produce analysis and design mod-
els, the latter are designed to manipulate program code. Current tool vendors are trying
to bridge this gap by regenerating program code from evolving UML models and vice
versa (Model Driven Architecture is a typical example of this kind of approach). Includ-
ing support for program code refactorings into the infrastructure of these novel UML
tools is not trivial however. The authors describe some of the problems and propose a
solution which they also implemented in a running tool prototype.9

Tracing OCL Constraints on Evolving UML Diagrams. Whereas the formal foun-
dations of refinement and refactoring of program code have been widely studied, much
less attention has been paid to formal methods for specification redesign and require-
ments tracing. A specification is usually spread through several documents and changes
frequently during software development. As such it is very hard to trace the require-
ments and to validate compliance of a software system to its requirements. In his posi-
tion paper, Kosiuczenko [20] studies the problem of tracingrequirements in UML class
diagrams with OCL constraints. He proposes a term rewritingapproach to automati-
cally derive traces which allow one to navigate through several specifications having
different levels of abstraction as well as to trace requirements in forward and backward
direction in distributed and changing specifications.

2.3 Methods and Techniques in Support of OO Software Evolution

A software system evolves as a consequence of the alternating phases of reengineering
and functionality extensions. The process of reengineering [6, 2] is typically composed
of three main phases: a reverse engineering phase, a restructuring phase and a forward
engineering phase, also referred to as change propagation.

Of the four submitted position papers that address the topicof object–oriented evo-
lution, [1] and [30] deal with the reverse engineering and restructuring phases of reengi-
neering respectively, [3] deals with aspects of software metrics formalization, and [28]
presents a method for investigating the evolution process of concrete systems, as a
whole. A short summary of each paper is given below.

A Class Understanding Technique Based on Concept Analysis.In [1], Arévalo
presents a novel method calledX-ray views, which allows gaining insight into how a
class operates internally, as well as how it interacts with other classes. This is useful
when trying to understand a class in the context of reverse engineering a software sys-
tem.

Understanding how a class works translates into identifying and evaluating different
types of dependencies between the entities of the class: itsinstance variables, represent-
ing the state, and its methods, representing the behavior. By evaluating these dependen-
cies and grouping them together, we can obtain a high level view of several aspects
of the analyzed class, such as: (a) how clusters of methods interact to form together a
precise behavior of the class; (b) how instance variables are related (i.e. used together);

9 An extended version of this paper has been published at the UML2003 conference [19].

(c) what is the public interface of the class; (d) which methods are the so called ”entry
points” (methods that are part of the interface and that callother methods inside the
class); (e) which methods use all of the class’ state and which ones use only parts of it.

Dependencies are defined as sets of directly or indirectly related class entities, and
are determined using Concept Analysis. For the unambiguousspecification of depen-
dencies, the author introduces a simple formalism, and using this formalism, defines
a number of seven different dependencies. Some examples include direct accessors,
exclusive direct accessors, collaborating instance variablesandinterface methods.

Based on the concept of dependencies, the author defines the higher level concept of
view, as a combination of a set of dependencies. She then exemplifies the technique by
defining two viewscore attributesandpublic interface. For example, the view called
public interfaceis defined in terms of the two dependenciesinterface methodsand
externally used state. The defined views are applied on a concrete Smalltalk class,and
results are discussed.

As future research, the author intends to define and evaluatemore views, as well as
investigate inheritance relations from the standpoint of the approach.

Strategy Based Restructuring of Object–Oriented Systems.In [30], Trifu and Dragoş
present a method for object–oriented design improvement. The motivation behind their
work is the conceptual gap that exists between state of the art design flaw detection tech-
niques and current source code transformation technology.More precisely, the problem
addressed is how to start from a given design problem, and (automatically) derive a
sequence of source code transformations that eliminate theproblem, while at the same
time improve the system with regard to a predefined set of quality criteria. By design
flaw, the authors refer to structural flaws in the code, causedby violations or misuse of
principles and heuristics of good design (e.g.god class, feature envy, data class, etc.
see [27]).

At the heart of the approach lies the novel concept ofcorrection strategy, defined
as a ”structured description of the mapping between a specified design flaw and all
possible ways to correct it”. Selecting between alternative paths through a strategy is
supported by the quality related information contained in the strategy itself, as well as
a suitable quality model. The quality model, as specified by the methodology, is a pre-
diction tool, used to estimate the quality impact of choosing one path from the several
possible ones, thus enabling quality-aware decisions to betaken either automatically or
manually.

Based oncorrection strategies, a quality-driven, highly automatable methodology
for design improvement is presented. The methodology has the advantage that it allows
for a great deal of flexibility by allowing the software engineer to configure the de-
sired level of automation. This way, a tool that implements the methodology is able to
function in a large number of configurations, ranging from a fully automatic to a fully
assisted mode, in which the software engineer has complete control over all decisions
taken in the restructuring process.

A set of correction strategies, together with the methodology and the quality model
provides the missing link, and therefore a complete solution to the problem of design
flaw removal from object–oriented systems.

The paper provides a critical overview of the state of the artin the field of restructur-
ing software systems in general and design improvement in particular. As future work,
the authors intend to continually improve on all aspects of the approach, provide a com-
prehensive catalogue of correction strategies, as well as perform a thorough evaluation
of the approach on real-life case studies.

A Formal Library for Aiding Metrics Extraction. The approach presented in [3]
does not directly address any of the phases of software evolution, but instead can be
considered as a fundamental contribution to all reengineering approaches that are based
on software measurement. In the paper, Baroni and Brito e Abreu present a library
called FLAME (a Formal Library for Aiding Metrics Extraction), that can be used to
formalize object–oriented design metrics definitions.

The declared purpose of the library is to encourage the use ofsoftware metrics
among software designers by providing them with formalizeddesign metrics, that are
based on the UML model rather than source code. This way, the benefits of software
measurements with increased tool support are made possiblein early phases of software
development, before source code is even available. Moreover, such definitions are at
the same time formal and executable, thus making them appropriate for experiments
replication (a recurring problem in the area).

The library contains a number of about 90 formally defined functions, at different
levels of abstraction, such asclassifier, package, attributeandoperation. As formal lan-
guage, the OCL (Object Constraint Language) is used on the core UML meta–model.
FLAME functions are further classified as general, set, percentage and counting func-
tions. Examples of FLAME functions includenew features, all attributesanddefined
operations, defined at classifier context, andclasses number, internal base classesand
supplier classes, defined at package context.

In the end, the authors present formal definitions for a few well known metrics from
the literature and draw conclusions.

As future work, the authors intend to extend the scope of the library to the complete
UML model, especially the behavioral parts. The authors also consider formalizing
the same metrics but using different meta–models. As the goal of their research, the
authors propose to provide precise definitions for most accepted sets of metrics, as well
as the creation of a metrics framework which will allow the creation and comparison of
metrics.

Method for Investigating the Evolution of Concrete Software Systems.Although
it is a widely accepted fact that any software system must continue to evolve in order
to remain successful, little is known today about how successful systems have evolved.
Therefore little has been learnt from past experience and mistakes. This is the motiva-
tion behind the technique described by Van Rysselberghe andDemeyer in [28].

The approach presented in the paper tries to shed some light upon the nature of the
phenomenon of evolution, by applying already established methods for software visu-
alization and detection of duplication in large amounts of data, to successive versions
of real-world systems. The lessons learnt in this way shouldimprove our methods and
understanding of software evolution.

The idea behind the approach is the same as the one used to reconstruct the past
evolution processes of early life on earth: comparing successive releases of the software
systems (the fossil remainders) and analyzing the differences. Differences in the imple-
mentation of two consecutive versions are highlighted using the technique presented in
[15], where a two dimensional matrix, called adot plot diagram, shows duplicate lines
of code as dots and mismatched lines as empty space. A dot plotdiagram correspond-
ing to the comparison between a system and itself would be a square, and would only
show a diagonal (a perfect diagonal means that every line of code is identical to itself).
However, when comparing different versions of the same system, the original diago-
nal is broken up into segments that are shifted or cut out. By studying these changes
and identifying patterns that correspond to known refactorings, one can reconstruct the
evolution process of the system.

The authors exemplify the technique on the refactoring ”pull-up-method”, which is
a typical refactoring used for eliminating duplicated code. It moves duplicated methods
higher up the class hierarchy and replaces them by a single method to be reused by all
subclasses. The corresponding patterns of change in the dotplot diagram are presented
and analyzed in detail.

In order to increase the scalability of the approach, the authors propose the use of
various data-reduction as well as automatic pattern recognition techniques.

3 Visualization of Software Evolution

The goal of the working group onevolution visualizationwas to discus different ap-
proaches to visualize the evolution of a software system. Toachieve this goal two vi-
sualization techniques were presented and discussed by theparticipants. Although no
general conclusions on how evolving programs should be visualized in order to un-
derstand their evolution were formulated, it did help both ideas presented to mature.
Through the discussion possible improvements or applications were presented.

The focus of the first discussion was mainly on the visualization of object oriented
software systems. Rajesh Vasa presented an initial idea of using hierarchical layering
of classes in a given software system based on dependency analysis. Though details
of the algorithm have not been worked out, the key concept is the use of Fan-In and
Fan-Out metrics to layer the classes in a system. Once this hierarchical layering has
been completed, one could see a visual representation of thesoftware system where
each layer had a number of classes. A number of these layer diagrams would have to
be generated, one for each version of the software system under observation. Using an-
imating algorithms we can then visualize the software system as it is changing. In the
open discussion various participants put forward suggestions and ideas on how to get a
better picture of these evolutions. For fine granularity onecould focus on how a single
class in the overall system and observe its evolution. Observing a single class or a set
of classes can be very useful if the development team wanted to get an overview of how
a set of classes evolved in the past. This type of observationwould be very useful in
determining quickly the set of classes that changed most (comparatively). Further, this
approach can help identifying classes where the dependencies are changing frequently.
Visual representation can be easily achieved as a simple chart where only the classes

reaching a certain pre-defined threshold would be shown. Thealternative approach dis-
cussed focused on how the overall layer diagram would changeas the system evolved.
This type of visualization will require a simple animation and provide a quick feed-
back of how the system was developed. The animation can provide an indication of the
development methodology used, as in top-down or bottom-up.In a scenario where a
development team built the library classes first and then focused on building the user-
interface layers, we should see a bottom-up build up of the classes in the hierarchical
layer diagram animation. This animation should mirror the development methodology
used. The discussion did not identify specific uses for this,but it can be valuable for
managers as it can provide insight into how the engineers arebuilding the system and
to ensure that the planned development approach is being undertaken.

The second discussion was focussed on the visualization of changes. Van Ryssel-
berghe shortly presented the idea for using a combination ofclone detection tools and
dotplots to visualize the changes made from one version of a program to another [28].
For the visualization of changes, such technique is indeed agood solution certainly
because it allows to spot changes rapidly. However as some noticed, some problems
go together with this visualization. A first problem is that of order. Reordering the con-
tents of a source file, causes many mismatches which aren’t interesting for its evolution.
However a solution found for this problem is to use a pretty printer to format and order
the attributes, methods, etc within a file. A harder problem is that of the visualizations
scalability. Both the author as some of the participants didn’t expect any help from fil-
tering techniques which would be applied. However making the whole process a two
step process is probably solving this problem. The idea is touse metrics first, just to
find the possible changes which might have happened. The author himself, argued that
using a some kind of similarity metric between files might succeed in solving the prob-
lem. After locating a file and its evolved counterpart, it would compare both using the
prescribed technique, increasing the technique’s and visualisation’s scalability (appli-
cability).

4 Reengineering Patterns

The goal of this workgroup was to ‘mine’ for new reengineering patterns, similar but
complementary to those that can be found in the Reengineering Patterns’ book [9]. The
approach taken was to come up with a list of known reengineering problems first, and
distill potential patterns out of each of these10.

Each reengineering pattern description contains a specificproblemrelated to soft-
ware reengineering, anexampleof the problem, a proposedsolutionto that problem as
well as sometrade-offsregarding that particular solution. Given the limited timewe
had for discussion, the patterns we ‘identified’ should onlybe considered as ‘potential’
patterns. For example, we did not discuss the other parts of which a reengineering pat-
tern consists: arationalemotivating the importance of the pattern,known usesof the
pattern andwhat nextto do after having applied the pattern. All reengineering patterns
we identified are listed below.
10 if the Reengineering Pattern book [9] did not already contain a pattern that addressed that

particular problem

4.1 Changing libraries

Problem. A software application uses a certain library (or component) which we want
to replace by a new one.

Example 1. We have a Java application that works with an Oracle databaseand want
to modify it to work with a Sybase (or some other) database.

Example 2. We have an application of which the user interface is based onAWT and
want to change it so that it uses SWING.

Solution. Rather then just modifying the existing application to makeit work with the
new library (or component), first add an intermediate layer in between the appli-
cation and the library. Like this the application becomes much less coupled to the
library it depends on. Given a sufficiently abstract layer inbetween, accommodat-
ing similar libraries in the future will become much easier.

Trade-offs. The solution should not be used when writing a new intermediate layer
would be too expensive. This is for example the case when the problem domain is
not well-established yet, i.e. when it is difficult to find a possible abstraction for
all libraries of a certain kind. For example, adding an intermediate layer that works
with different database management systems is a quite standard and frequently oc-
curring solution. Writing an intermediate layer that is independent of the particular
user interface being used, on the other hand, is a task that should not be taken on
lightly.

4.2 Predicting change impact

Problem. How can we predict the impact of changes to a software system?
Example. Changing, for example, the default value of a variable may have far reaching

consequences throughout the entire implementation, wherever this value is explic-
itly or implicitly, directly or indirectly relied on.

Solution. Many tools and techniques exist to help in predicting the impact of changes
to a program: program analysis, simulation on system model (dependency graph),
testing after change is implemented. However, all these techniques have their limi-
tations and there might always be cases (i.e. possible impacts) that we missed.

Trade-offs. Do not rely too much on the tools and techniques that exist. Sure, they will
help, but be aware that they are not ‘all powerful’. Also, thestronger the technique
(i.e., the more exact it is) the less efficient it probably is.

4.3 Missed abstractions

Problem. In ‘bad’ object-oriented programs, a lot of the problems areoften due to a
lack of abstraction, or having chosen the wrong abstractions.

Examples. Code duplication, wrong use of object-oriented concepts, overuse of global
variables, long parameter lists, . . .

Solution. Refactorings can often do a quite good job in rectifying someof these situa-
tions.

Trade-offs. Make sure that the ‘bad code’ is really ‘bad code’ and not optimized (or
deliberately written in that style for some other importantreason).

4.4 Eliminating dead code

Problem. How can we eliminate dead program code from an application?
Example. A method that is not called internally (from within the same class) neither

from any other class. Why keep this method if it is not used anyway?
Solution. Although there are some tools and techniques that may help indetecting

‘dead code’, the problem is that one never really knows whether the code is really
dead. Maybe it does not seem to be used in the application itself but it is called
from other sources that you don’t have; or maybe instead of being dead it is just
‘not born yet’ in the sense that someone already put in place apiece of code with
the idea of using it in some near future. Therefore, we suggest not to remove the
dead code entirely but to replace it with assertions and keepthe old code for a time
(say one or two years or so), to play safe.

Trade-offs. It is difficult to decide how long to keep the code and who will take the
final decision to remove the code in the end.

4.5 Enforcing coding conventions

Problem. How can we make sure that a given set of coding standards and conventions
will be consistently used throughout an application?

Example 1. We want to ensure that the instance variables of a class are never called
directly, but always through an accessing method.

Example 2. We want to ensure that all mutator methods of instance variables have a
consistent name. For example, the naming convention adopted in Java is to name
it after the name of the variable preceded by ‘get’. The naming convention in
Smalltalk is to name it after the name of the variable concatenated with a colon
‘:’.

Solution. Several research tools are available today that allow us to detect breaches of
such naming conventions, as well as to enforce their consistent usage.

Trade-offs. However, care should be taken with enforcing these conventions if the de-
velopment team is not entirely comfortable with them. For example, maybe the
team already understands its code sufficiently well so that it is not really needed to
‘clean it up’ to make it more readable (by enforcing the use ofcertain conventions
throughout the entire system).

4.6 Other potential reengineering patterns

Some other reengineering problems we discussed but from which we did not have the
time to extract a potential reengineering pattern are the following: (a) How to detect
and solve usage ofdata classesin object-oriented programs. (b) How to detect and
correct (run-time)dangling referencesin programs. (c) How toensure class cohesionin
object-oriented programs. (d)Preserving behavioral contracts in inheritance relations,
i.e. making sure that inherited methods in subclasses respect the intended behavior of
their parent methods. (e)Controling external and internal quality specificationsof a
system during reengineering.

5 Conclusion

In this report, we have listed the main ideas that were generated during the workshop
on object-oriented reengineering. Based on a full day of fruitful work, we can make the
following recommendations.

– Viable Research Area.Object-Oriented Reengineering remains an interesting re-
search field with lots of problems to be solved and with plentyof possibilities to
interact with other research communities (dynamic analysis, modeling, UML, met-
rics, visualization to name those that were touched upon during the workshop).

– Establish a research Community.All participants agreed that it would be wise to
organize a similar workshop at next year’s ECOOP.

– Workshop Format.The workshop format, where some authors were invited to sum-
marize position papers of others worked especially well.

References

1. G. Arevalo. X-ray views on a class using concept analysis.In S. Demeyer, S. Ducasse, and
K. Mens, editors,WOOR’03 Proceedings, pages 76–xxx, 2003.

2. H. Bär, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza, R. Marinescu, R. Nebbe,
O. Nierstrasz, M. Przybilski, T. Richner, M. Rieger, C. Riva, A.-M. Sassen, B. Schulz,
P. Steyaert, S. Tichelaar, and J. Weisbrod. The FAMOOS object–oriented reengineering
handbook, 1999.

3. A. L. Baroni and F. B. e Abreu. A formal library for aiding metrics extraction. In S. Demeyer,
S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 62–70, 2003.

4. R. Bertuli, S. Ducasse, and M. Lanza. Run-time information for understanding object-
oriented systems. In S. Demeyer, S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings,
pages 10–20, 2003.

5. E. Casais, A. Jaasksi, and T. Lindner. FAMOOS workshop on object-oriented software evo-
lution and re-engineering. In J. Bosch and S. Mitchell, editors,Object-Oriented Technology
(ECOOP’97 Workshop Reader), volume 1357 ofLecture Notes in Computer Science, pages
256–288. Springer-Verlag, Dec. 1997.

6. E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: A taxonomy.
IEEE Software, 7(1):13–17, January 1990.

7. S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse engineering platform combining
metrics and program visualization. In F. Balmas, M. Blaha, and S. Rugaber, editors,Pro-
ceedings WCRE ’99 (6th Working Conference on Reverse Engineering). IEEE, Oct. 1999.

8. S. Demeyer, S. Ducasse, and K. Mens, editors.Proceedings of the ECOOP’03 Workshop
on Object-Oriented Re-engineering (WOOR’03), Technical Report. University of Antwerp -
Department of Mathematics and Computer Science, June 2003.http://..../.

9. S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented Reengineering Patterns. Mor-
gan Kaufmann, 2003.

10. S. Demeyer and H. Gall, editors.Proceedings of the ESEC/FSE Workshop on Object-
Oriented Re-engineering, TUV-1841-97-10. Technical University of Vienna - Information
Systems Institute - Distributed Systems Group, Sept. 1997.

11. S. Demeyer and H. Gall. Report: Workshop on object-oriented re-engineering (WOOR’97).
ACM SIGSOFT Software Engineering Notes, 23(1):28–29, Jan. 1998.

12. S. Demeyer and H. Gall, editors.Proceedings of the ESEC/FSE’99 Workshop on Object-
Oriented Re-engineering (WOOR’99), TUV-1841-99-13. Technical University of Vienna -
Information Systems Institute - Distributed Systems Group, Sept. 1999.

13. S. Ducasse and O. Ciupke. Experiences in object-oriented re-engineering. In A. Moreira and
S. Demeyer, editors,Object-Oriented Technology (ECOOP’99 Workshop Reader), volume
1743 ofLecture Notes in Computer Science, pages 164–183. Springer-Verlag, Dec. 1999.

14. S. Ducasse and O. Ciupke, editors.Proceedings of the ECOOP Workshop on Experiences in
Object-Oriented Re-engineering, FZI report 2-6-6/99. FZI Forschungszentrum Informatik,
June 1999.

15. S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. In H. Yang and L. White, editors,Proceedings ICSM’99 (International
Conference on Software Maintenance), pages 109–118. IEEE, Sept. 1999.

16. S. Ducasse and J. Weisbrod. Experiences in object-oriented reengineering. In S. Demeyer
and J. Bosch, editors,Object-Oriented Technology (ECOOP’98 Workshop Reader), volume
1543 ofLecture Notes in Computer Science, pages 72–98. Springer-Verlag, Dec. 1998.

17. S. Ducasse and J. Weisbrod, editors.Proceedings of the ECOOP Workshop on Experiences
in Object-Oriented Re-engineering, FZI report 6/7/98. FZI Forschungszentrum Informatik,
July 1998.

18. P. V. Gorp, H. Stenten, T. Mens, and S. Demeyer. Enabling and using the uml for model
driven refactoring. In S. Demeyer, S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings,
pages 37–40, 2003.

19. P. V. Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automating source-consistent
uml refactorings. InProc. 6th International Conference on the Unified Modeling Language.
Springer Verlag, 2003.

20. P. Kosiuczenko. Tracing requirements during redesign of uml class diagrams. In S. Demeyer,
S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 41–47, 2003.

21. M. Lanza and S. Ducasse. Polymetric views — a lightweightvisual approach to reverse
engineering.IEEE Transactions on Software Engineering, 29(9):782–795, sep 2003.

22. Q. Li and P. Chen. A mechanism for instrumentation based on reflection principle. In
S. Demeyer, S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 21–25, 2003.

23. Q. Li and P. Chen. A new strategy for selecting locations of instrumentation. In S. Demeyer,
S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 26–31, 2003.

24. K. Mens and B. Poll. Supporting software maintenance andreengineering with intentional
source-code views. In S. Demeyer, S. Ducasse, and K. Mens, editors, WOOR’03 Proceed-
ings, pages 32–36, 2003.

25. K. Mens, B. Poll, and S. González. Using intentional source-code views to aid software
maintenance. InProceedings of ICSM2003, 2003.

26. T. Mens, R. V. D. Straeten, and J. Simmonds. Maintaining consistency between uml models
with description logic tools. In S. Demeyer, S. Ducasse, andK. Mens, editors,WOOR’03
Proceedings, pages 48–54, 2003.

27. A. J. Riel.Object–Oriented Design Heuristics. Addison–Wesley, first edition, 1996.
28. F. V. Rysselberghe and S. Demeyer. Studying software evolution using clone detection. In

S. Demeyer, S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 71–75, 2003.
29. R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description logic to maintain

consistency between UML models. InProc. 6th International Conference on the Unified
Modeling Language. Springer Verlag, 2003.

30. A. Trifu and I. Dragos. Strategy based elimination of design flaws in object-oriented systems.
In S. Demeyer, S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 55–61,
2003.

31. A. Zaidman and S. Demeyer. Using a variant of sliding window to reduce event trace data.
In S. Demeyer, S. Ducasse, and K. Mens, editors,WOOR’03 Proceedings, pages 4–9, 2003.

